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e 4 SF’s, 2 equations

= express any 2 SF’s in terms of the other 2

* all are constrained by PDFs at high Q, but only Fé’p+’7p has experimental

constraints at low Q

. Fg’f has been previously modeled for the PV
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used for Qweak.



CKM Unitarity

* The Yukawa couplings between the quarks and Higgs fields is allowed to mix
generations.
* One can then perform a basis change of the quark generations to diagonalize those

terms.
* The cost is that we complicate the charged current interaction:
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* The CKM matrix elements act like coupling constants between the W boson and two
left-handed quarks of opposite isospin projection.
* |ts unitarity means the sum of the squares of the top row elements is 1:
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1 Loop Effects on Superallowed Fermi Transitions:

Master formula relating Vuq to lifetime measurements:

p e
Note: several universal RCs are
\/ ‘Vu ‘2 2934.233 common to both beta and muon

=
Ft(l1+Ag) decay and these cancel in

9 beta decay
‘VUd| ™ muon decay

JF1 is a product of the statistical decay rate factor and decay lifetime
and contains nuclear-dependent RCs
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axial current
interaction

Sirlin 1978: }W = & [In4 + 2CBorn + A

Marciano 2006: = o fo Q2+M2 (QQ)CZQQ

\ form factor
models hadron



Dispersion Relations in QFT

Cutkosky Cutting Rule:
ImM (s) = —5DiscM (s)

©

cut: intermediate state energy

2

(me +my)* = m?

e cutting the diagram at the intermediate state, placing the intermediate state

virtual particles on their mass shell

* sum over all possible phase space of these on shell particles

2
forward
limit Ootical
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Im B deLIPS Thgorem
[]
Cauchy’s Integral theorem: (80) — 2%” 561“ %ds

If a function has an analytical structure in the complex plane, application of the Cauchy
iIntegral theorem using an appropriate contour can yield a Dispersion Relation.



Dispersion Relation for the 11" Box
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Numerator can be written as: L)) H_y,

For on-shell states, hadronic tensor involves structure functions:

v v kH kY %% K p¥ %% ak
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only need axial piece

The axial part of the gW box correction is odd with respect to the neutrino’s incident energy E:

A B A
= ReO\ ) (E) = 2 [ dE' £ ImO) (B
(A) o Y (w2,Q%)

nyW fW2 dW? fo dQ2 1—|—Q2/M2 MElmm (% o 4M]_15]m7;n)

Depends on knowledge of the F3 structure function at all W2 and Q2.



Kinematical Regions of F,""

* One needs different models for F3 for different regions in the plane.
* The dispersion weight favours small W? and Q2
* The structure function should be continuous at the (moveable)

boundaries, and the final box correction insensitive to their choice.
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Elastic Contribution:
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G, G, taken from Ye, Arrington & Hill 2018 data

n

A o —
= 0, = (0.8967 £ 0.0684) = =|1.04(6) x 103 |

Important note: the dispersion treatment doesn’t add anything new to the loop
calculation of the elastic contribution

27 (4)
o YW, A

Box correction is sensitive to
the axial mass parameter!
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Resonance Contributions:

Origin: the first exchanged vector boson in the box diagrams can excite
the neutron into an excited resonance state

the photon has an isovector (V) and an isoscalar (S) component
W boson only has isovector (V)

l/
/ BOX + XBOX = only (S) part of photon survives

:>| only I=1/2 resonances are allowed |

> 1
/ R = P11(1440), D13(1520), 511(1535), ...

We can use the Lalakulich or MAID helicity amplitudes to find F3 from these resonances.
example: Lalakulich D3

F{%" (Dy3) = =45 [ - C{(Q? = vM) + CSvM + C§ 3 (2M3 — 2M Mg +Q* — vM)|CAT (W, M)

Resonance | (%Y (x1073) | ¢ are form factors found from

: i A,res
Using MAID: D 0.054 scattering data
P -0.009
S -0.002

total 0.04




High Q2 means the hadron looks like individual free quarks, so we use pQCD and
factorization:

Amis) _ 1 5 agm(Q?) /mmax (0) oy (2r — 1)
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Perturbatively include effects of the strong interaction

at NLO ... LhHAPDFs
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* The effect of the NLO pQCD correction suppresses the LO prediction by 1 — a7s

* The running of agm(Q?) enhances the box correction by 4% from atomic limit

Wprs = 2.29(3) x 1073| (Q%) =12 GeV”




Regge Contribution:

At low Q2 and high W2, the strong interaction becomes nonperturbative

Model 1 for F3. Seng, Gorchtein, Ramsey-Musolf, Phys. Rev. Lett. 121, 241804 (2018)
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The true Q% -dependence of this structure function is not well-determined by theory:.
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VMD Processes: "5 o
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Diagrams: Seng et. al. Phys. Rev. Lett. 121, 241804 (2018)

Idea: match this function to the well-known value in the DIS region around
Q? = 2 GeV? AND constrain it from available data on F37 "7

3 ~ 9 (more on this later)



Some data exists on the 1st Nachtmann moment of

N

Mup+17p(1 Qz) 2 /1d f
= — €T —
3 ’ low Q2 3 0 £U2
—.__ 1
|
......... 2| L L L L :I; L L L L I QZ[GeVz]

vp+up
FS

g oR,

3,res

£: 2x

144/1+4M222 /Q?

_____ N.Mom (Regge)
N.Mom (DIS)

CN Mom

Data points: T. Bolognese et al., Phys. Rev. Lett. 50, 224 (1983)

nonlinear fit:

f = 0.80(3)
g = 0.63(10) GeV~*
yW

A,Reg —

37(10) x 1073

(Model 1 result)




Model 2 for Fa:. A. Capella ¢# al., Phys. Lett. B 337, 358 (1994)

(0) Q2 aR
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Similarly, we can model the purely axial In the same way

P.C. Bosetti ¢ al., Nucl. Phys. B 203, 362 (1982):

Fit parameters:
c=0.61(1)
Ag = 0.49(7)

also include high-weight data points from
DIS region at Q% = 2 GeV-



) Is the ratio really 97
F;erVp(:U,Qg)

0
Py (2,Q2)
A MMHT2014 PDFs
14
I(x)
12 e
Q: = 1GeV?
9 0 — = 2 GeV?
— 3 QeV?
= 4 GeV?
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No! But the observable correction is proportional to fol doeFs3(x, Q%)
so taking a ratio of 9 is still meaningful.

D}%eg =0.34 x 107 (PDF-dependent)

=
Two choices:
Ay = A o | O0E e = 0.38(4)sys(3)star x 1077

The Regge contribution is poorly constrained, and multiple models lead to
a similar central value, e.g. from gZ axial contribution to Qweak:

0 1+A%/Qf N
F?S,I){eg — 1+A2§g2 3 DIS(le Qo) A~ 0.8 GeV

P.G. Blunden ¢/ /., Phys. Rev. Lett. 107, 081801 (2011)



Background Contribution:

The background is a smoothly decreasing curve which goes to 0 at the pion threshold
and matches the DIS and Regge regions at W? = 4 GeV-~

By using PDF info and valence quark arguments one can show the
proportionality statement:

Fy o~ F7Y at fixed Q2

Rescaled Bosted-Christy parametrization:

W2—M2[ W2 = (M A ma)?) ™y op )W = (M 4 m))

0) _ 2
F3 hea = 15(Q7) 31200 1+ Q% + Q2 =1 (Q2 + o) (b +ef Q2 +d] Q%)

Ns
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W _
Abga = 0-15(1) x 1077

0.4

0_2:_ this is a similar box contribution as
: compared to extending the DIS &
s @ Regge models up to x=1




Boundary Matching:

* The SF should be continuous over all region
boundaries

* All models agree within uncertainties

e The boundaries shown Q2 =2 Gev?, W2, = 4 GeV?

are not unique, and we find the total Box
correction is insensitive to their choice
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Revising Vud: Simple Approach

Total Box correction:

Y (x1073) SBM SGRM CMS
elastic 1.04(6) 1.06(6) 0.99(10)
resonance 0.04(2) — —
DIS + high-Q2 bed | 2.29(2) 2.17(0)*  2.16(2)*
Regge + low-Q? bgd | 0.52(7) 0.56(8) 0.36(7)
total 3.89(10)  3.79(10)  3.51(12)

*computed at «(0) = 1/137.036

Extract Vuq from super allowed beta decays:

V|2 = 2984435
ud Ft(1+AY)

AY =0.017007 + 207"
\

A% _ 0.02479(20) iIncludes re-summed log

W | 2252 = [Vial? 4 Vs |? + [V |? = .9983(4) # 1

The effect of computing DLW via a dispersion relation has led to the
top row of the CKM matrix to fall short of unitarity by 4o




Revising Vud: CMS Approach

Total Box correction:

Y (x1073) SBM SGRM CMS
elastic 1.04(6) 1.06(6) 0.99(10)
resonance 0.04(2) — —
DIS + high-Q2 bed | 2.29(2) 2.17(0)*  2.16(2)*
Regge + low-Q? bgd | 0.52(7) 0.56(8) 0.36(7)
total 3.89(10)  3.79(10)  3.51(12)

*computed at «(0) = 1/137.036

Extract Vuq from super allowed beta decays:

‘Vud‘Z 2984.43s

— Ft1+AY)  AY =.01671 4 1.022 20" (Q* > Q2) + .00014

+1.065 _2D7W(Q2 < Q)+ QDWZ_
AV = .02486(26) e " el

* Z%ﬁ?M = |Vud‘2 + |Vu8’2 T ‘Vub‘Q = .9982(5) 7é 1

The effect of computing DLW via a dispersion relation has led to the
top row of the CKM matrix to fall short of unitarity by 3.30

(used by CMS)



EIC Contribution?

* One could improve the Vud extraction by better constraining the
neutral current axial structure functions:

vp+vp _ 4 YZ
FS T FS,p F3,n

(0) V2 V4
F3 — F37p — ngn * Need more data at low Q, low x

l/

eN — eX

e~ DIS cross section:

2 _NC 332 2 )
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(& (& Z
FNC ~ —(g4 £ Ag&)nyzxFJ“ + ...




